1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
| import pandas as pd import math
commonWords = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn', 'hasn', 'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn', 'weren', 'won', 'wouldn']
class myNaiveBayesAbstract: def __init__(self, trainingSetName: str, labelName: str, abstractName: str): print('init trainingSet') self.trainingSet = self.readTrainingSet(trainingSetName) self.trainingLabels = self.trainingSet[labelName] self.trainingAbstract = self.trainingSet[abstractName] self.trainingSize = len(self.trainingSet)
print('init labelData') labelSet = list(set(self.trainingLabels)) self.trLabelDic = {} for i in labelSet: self.trLabelDic[i] = {} self.trLabelDic[i]['count'] = 0 self.trLabelDic[i]['word'] = []
print(self.trLabelDic)
def isCommonWord(self, word): if word in commonWords: return True else: return False
def readTrainingSet(self, name: str): print('readTrainSet: ', name) return pd.read_csv(name)
def collectAbstract(self, words, label): if label in self.trLabelDic: self.trLabelDic[label]['count'] += 1 self.trLabelDic[label]['word'] += words else: print("error can't find " + label + " in trLabelDic.")
def calculateProbability(self, testData): tempDic = {} for key in self.trLabelDic.keys(): tempDic[key] = {}
for key in self.trLabelDic.keys(): wordsCollection = self.trLabelDic[key]['word']
for word in wordsCollection: if not self.isCommonWord(word): if word in tempDic[key]: tempDic[key][word] += 1 else: tempDic[key][word] = 1
uniqueWords = [] for key in self.trLabelDic.keys(): for tempword in tempDic[key]: if tempword not in uniqueWords: uniqueWords.append(tempword)
testSize = len(testData) testUniSize = 0
for i in range(0, testSize): words = testData[i].split(" ") for word in words: if not self.isCommonWord(word): if word not in uniqueWords: testUniSize += 1
totalUniCount = testUniSize + len(uniqueWords)
testLabels = []
for i in range(0, testSize): words = testData[i].split(" ")
probability = {}
for key in self.trLabelDic.keys(): probability[key] = math.log( self.trLabelDic[key]['count'] / self.trainingSize, 10)
for word in words: if not self.isCommonWord(word): for key in self.trLabelDic.keys(): totalCount = len( self.trLabelDic[key]['word']) + totalUniCount
if word in tempDic[key]: probability[key] = probability[key] + math.log( (tempDic[key][word] + 1) / (totalCount), 10) else: probability[key] = probability[key] + math.log( 1 / (totalCount), 10)
max_num = max(probability, key=probability.get)
for key in self.trLabelDic.keys(): if probability[max_num] == probability[key]: testLabels = testLabels + [key]
return testLabels
def classify(self, testData): print('classify')
testLabels = self.calculateProbability(testData)
return testLabels
def predict(self, abstracts): for i in range(0, self.trainingSize): words = self.trainingAbstract[i].split(' ')
tempLabel = self.trainingLabels[i] self.collectAbstract(words, tempLabel)
return self.calculateProbability(abstracts)
naiveBayesAbstract = myNaiveBayesAbstract('trg.csv', 'class', 'abstract')
test_set = pd.read_csv("tst.csv") test_set['class'] = naiveBayesAbstract.predict(test_set["abstract"])
test_set.drop(['abstract'], axis=1).to_csv('out.csv', index=False) test_labels = list(set(test_set['class']))
for key in test_labels: print(key + ': ' + str(len(test_set[test_set['class'] == key])))
|